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A series of Southern Hemisphere experiments have been performed to study turbulent
convection on a continental shelf–slope placed in a large rotating tank filled with
fresh water. Dense salt water was uniformly released at the fluid surface above the
shelf. The resulting negatively buoyant bottom flow travelled over the shelf and then
downslope. The non-dimensional reduced gravity of the dense downslope flow was
found to scale as G′ = g′h4/3/(B2/3

0 W ) for a fixed slope angle, where B0 the buoyancy
flux at the surface, g′ the reduced gravity of the bottom flow, h the water depth
above the shelf and W the width of the dense water source. Under rotation, a
bottom Ekman layer, with superimposed roll waves, propagated down the slope and
towards the left sidewall when looking down the slope. As the modified natural Rossby
number P decreased, where P = (B0/f

3h2)1/2W/h and f is the Coriolis parameter, the
appearance of the bottom layer had four different forms: laminar flow, the continuous
formation of waves, the periodic release of wave groups, and the periodic generation
of eddies. Vortices generated on the surface were cyclonic, suggesting, but not proving,
that eddies in the dense bottom layer as originally formed were anticyclonic.

With a canyon cut from the middle of the shelf to the bottom of the slope, G′ values
measured in dense flows to the left of the canyon, were significantly reduced. The
canyon channelled a large amount of dense fluid with a buoyancy considerably larger
than that of dense flows on the slope. However, the flow regime criteria remained
basically unchanged with eddies and downslope Ekman layer being able to partially
cross the canyon.

1. Introduction
The experimental investigation reported here considers convection, produced by a

negative buoyancy flux, above a combined shelf–slope in a rotating fluid. In many
partially enclosed bodies of water, convection, due to a negative buoyancy flux at the
free surface, can drive a mean flow through the system (see e.g. Maxworthy 1997 for
a review). Negative buoyancy fluxes can arise through evaporation or the action of
cold winds which cause surface cooling and freezing. Gill (1973) has suggested that
buoyancy fluxes large enough to affect the overall dynamics of the oceanic system
can be created by the high-salinity flows caused by salt rejection through freezing.
In many natural systems the resulting convectively driven flows are also influenced
by the Earth’s rotation, so that products from convective mixing are influenced and
diverted by the Coriolis force.

The present work is intended to model the combined effects of convection and
rotation, that occur in the polar seas, with a focus on the Ross and Weddell Sea
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Figure 1. A schematic diagram of localized dense water production and resulting flow over
the combined continental shelf–slope (Baines & Condie 1998, reproduced with permission).

in the Antarctic (Gordon et al. 1993; Gascard 1991; Gill 1973; AGU Antarctic
Research Series volume 75). An aspect of particular interest to this problem is the
convection that takes place in continental shelf regions, where reduced depths (300–
500 m) can result in high-density products of convection. The dense water produced
over continental shelves then descends to depths greater than 103 m down and along
continental slopes. Thus the behaviour of the dense flow, under the influences of
gravity and rotation down a sloping geometry, is of great oceanographic interest. A
schematic diagram of such flows in nature can be found in the review by Baines &
Condie (1998) (here figure 1). This figure shows localized dense water production over
the shelf beneath a polyna, formation and convection of a dense plume, its motion
along the shelf, and its descent down the slope as a sheet with eddy formation and
Ekman drainage, or via a plume in a submarine canyon.

The present experiment used a similar rotating tank set-up to the experiments by
Maxworthy & Narimousa (1994) and Jacobs & Ivey (1998), with the major difference
that a plane slope with side boundaries was used rather than a flat surface or a
truncated cone. The direction of rotation was clockwise, when viewed from above,
which is consistent with natural flows in the Southern Hemisphere (Gordon et al. 1993;
Muench & Gordon 1995; Gordon 1998). The presence of the boundaries was found to
have a profound effect on the flow along the whole length of the slope, and given that
many natural flows will be bounded on one or more sides (see e.g. Maxworthy 1997)
a laterally restricted geometry was studied here. A plane slope geometry has also
been considered in experiments by Lane-Serff & Baines (1998), Cenedese et al. (2004),
and Etling et al. (2000). However, their investigations did not consider a convective
source of dense fluid, but instead a continuous, localized, and relatively small source
of fluid of known density was supplied to the slope. This meant that the density of
the fluid onto the slope was fixed rather than being set by convective processes, as
it would in the natural flows modelled here. The convection was initiated here using
a dense fluid source which was placed above the shelf and covered half or all of the
shelf area. This source was then supplied with a near-saturated salt solution.

Topographic variations, e.g. submarine canyons, can contribute substantially to the
local down-slope flow by channelling the fluid into them (Baines & Condie 1998). The
effect of such a canyon has been introduced into the present investigations. If we take,
for example, the Weddell Sea, a number of wide canyons are known to extend from
the 500 m deep Western Shelf to 4000 m, such as the Fedorov, Uruguary, Antarctic,
Endurance, St. Martin and Aurora canyons (AGU Antarctic Research Series
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volume 75). To model this, a series of experiments were performed with a canyon cut
from the middle of the shelf to the bottom of the slope.

In what follows, two existing scaling laws for the buoyancy of the outflow from the
shelf, produced by convection, are compared for bottom flows. The propagation and
flow regimes for both bottom boundary layers and surface fresh water are studied,
under different rotation rates, water depths and dense source flow rates and widths.

A description of the experimental apparatus and procedure is given in § 2. This is
followed by a discussion of the present results on a continental shelf/slope, first in
a non-rotating fluid, in § 3.1, to provide a comparison for the results with rotation,
presented in § 3.2. Flow morphology and eddy production are discussed in § 3.3 and
§ 3.4. Section § 4 contains investigations of the effect of the addition of a submarine
canyon, in a non-rotating fluid and in a rotating fluid. The results are discussed in § 5.

2. Experimental procedure
The present experiments were designed to model the formation and descent of dense

water such as that occurring at several locations around the Arctic and Antarctic
continents. A clear acrylic tank with a rectangular base 120.5 cm × 89 cm was placed at
the centre of a turntable of diameter 160 cm (figure 2). The shelf–slope configurations
found at positions along the Antarctic coast, were represented by a horizontal shelf
(L × W = 120.5 cm × 31 cm, see figure 2) placed along one of the longer sides of the
tank and an adjacent slope placed at α =15◦ to the horizontal. The slope was fixed
to the inward edge of the shelf, forming a constant slope to the tank floor (which
was 16.5 cm vertically below the shelf). The tank was filled with fresh water to a
prescribed depth, giving different values of h, the depth of the water above the shelf,
in the range 1 cm <h< 3.5 cm.

Convection was generated by supplying almost saturated salt solution to the surface
of the fluid directly above the shelf. Large salt concentrations were used so that high
buoyancy fluxes could be obtained while keeping the volume flux of source fluid
to a minimum. A spatially uniform buoyancy flux was achieved by dripping the
salt solution through porous hoses onto the bottom of a set of porous steel trays,
in contact with the free surface of the fresh water, similar to those used in the
convection experiments of Grimm & Maxworthy (1999). The trays contained layers
of paper towel, which distributed the saline solution more evenly. Precision flow
meters supplied a prescribed flux of the source fluid to the trays. Dye was added to
the source fluid, allowing the structure of the dense flow downslope to be observed.
The buoyancy flux B0 at the surface, directly above the shelf, was calculated using

B0 =
Qsg

′
s

AS

(cm2s−3) (2.1)

where Qs is the volume flux of the salt solution (of density ρs) supplied to the
area AS = L × W directly above the shelf, L =120.5 cm is the length and W = 15.5 or
31 cm is the width of the source, g′

s = g(ρs − ρ0)/ρ0 is the reduced gravity of the salt
solution, g is the acceleration due to gravity, and ρ0 is the density of fresh water.
For future use the buoyancy input per unit length (L) of the source is defined as
B = Qsg

′
s/L = B0W .

For experiments in a rotating fluid, after filling the tank with fresh water, it was
allowed to ‘spin-up’ for approximately 30 minutes, before the buoyancy source was
activated. The direction of the rotation was clockwise when viewed from above, in
keeping with natural flows in the Southern Hemisphere. Unlike the schematic diagram
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Figure 2. Side and plan views of the experimental tank. The tank has a horizontal shelf at
the left-hand side of the sketch and a constant slope with the bottom end of the slope at
the right-hand side of the sketch. Six removable trays with horizontal porous bottoms were
placed on the water surface and covering half or all of the flat shelf. Density was measured at
locations marked 1–8, with 1–5 in downslope catch basins, 6 in the Kelvin current, 7 on the
middle of the shelf close to the left sidewall and 8 in the downslope canyon.

(figure 1), owing to sidewall effects, a dense current, called a Kelvin current in what
follows, formed along the left-hand sidewall of the tank when looking down the slope
(figure 2), and carried a modest fraction of the total outflow from under the shelf.

A range of rotation rates was studied in the present experiments, corresponding to
values of the Coriolis parameter, f = 2Ω , in the range of 0–0.87 s−1, where Ω is the
angular rotation rate. In both the rotating and non-rotating experiments the dense
flow down the slope had a thickness of the order of 1–2 mm. To measure the density of
this flow, five ‘V’-shaped catchment reservoirs were placed approximately two thirds
of the way down the slope, i.e. 40.6 cm from the edge of the shelf, and placed 20.3 cm
apart along a line of constant depth. These are labelled ‘1–5’ in figure 2. The fluid
collected from these reservoirs (through hollow needles taped at the bottom) allowed
the density of the dense layer to be measured with virtually no contamination by
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fresh ambient fluid. Fluid was collected slowly, at the rate of 1 droplet every 1–3 s,
and there was always an overflow from these reservoirs. Two other hollow needles,
marked 6 and 7 in figure 2, were taped to the bottom, one 20.3 cm away from the
shelf–slope edge and near the left wall, and the other one in the middle of the shelf
and 15.2 cm from the left wall. Density measurements were made by taking a precise
volume in a gravity bottle and weighing it using an electronic scale. This method gave
fluid densities accurate to 0.00005 g cm−3.

To avoid an accumulation of the dense fluid at the bottom of the slope during the
experiments, a drain on the floor of the tank continuously removed the dense outflow.
This fluid was replaced by fresh water from a distributed source placed just below
the free surface on the opposite side of the tank to the buoyancy source. The relative
positions of the fresh water source and dense fluid drain can be seen in figure 2.
Constant fluid depth was maintained using an overflow pipe located next to the dense
fluid drain.

In later experiments, a 90◦ triangular canyon was cut between reservoirs 3 and 4,
from the middle of the shelf to the bottom of the slope (see figure 2). The start of
the canyon at the middle of the shelf and the transition at the shelf–slope edge were
smoothed to avoid turbulence generation around sharp edges. The canyon had an
average width of 4.1 cm and depth of 2.1 cm. A tiny needle and suction tube were
placed at the bottom of the canyon, a distance of 30.5 cm down from the shelf–slope
edge, marked 8 in figure 2.

3. Convection onto a continent shelf–slope model
3.1. Non-rotating ambient

In this section the results of the experiments with no rotation (f = 0 s−1) will be
presented. Measurements of the density and flow morphology of the downslope flow
are compared to existing theories and earlier observations.

At the start of these experiments, the flow of salt solution to the buoyancy source
was switched on, and dense fluid was observed to descend, almost evenly, beneath
the buoyancy source. The resulting convection beneath the source quickly became
turbulent and mixed fluid began to flow down the slope, made visible by the addition
of dye to the dense salt solution. A mean exchange flow under the source was set up
with the dense fluid (see figure 2, side view), flowing down the slope, being replaced
by fresh water entering from above.

The reduced gravity g′, relative to the fresh water ambient, of the dense downslope
flow was measured using a conductivity probe placed in one large capture reservoir
on the middle slope. It is plotted as a function of time t in figure 3. The values
of g′ in the figure have been made non-dimensional following Phillips (1966), thus
g′h/(B0W )2/3, and this appears to collapse the data; here W = 31 cm was the width
of the buoyancy source. Similarly, time has been non-dimensionalized by S/(B0W )1/3,
where S =45 cm is the distance down the slope where the density was measured.
However, it is shown below that this non-dimensionalization is not unique. In figure 3
a sudden increase in g′ can be seen as the dense downslope flow reached the probe,
which suggests that this layer initially formed a sharp density front. This is consistent
with the dye observation. It may also be seen from the figure that a steady state was
reached after a non-dimensional time of 2–3, after which g′ remained approximately
constant.

The downslope bottom flow remained quasi-steady and laminar for all non-rotating
cases in the present experiments. Samples of the thin and dense downslope layer were
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Figure 4. The reduced gravity g′ of the dense downslope flow is plotted against the
independent quantities (a) g′ = (7.40 ± 1.86)(B0W )2/3/h proposed by Phillips (1966) and (b)

g′ = (3.08±0.43)B
2/3
0 W/h4/3 proposed by Maxworthy (1997). Each data point shows the mean

value of g′ measured at reservoirs 1 to 5, with the error bars showing the maximum and
minimum values observed. The solid line in (a) is a lest-square fit of the form (3.1) and that
in (b) shows (3.4). It is noted that the root-mean-square error of the linear least-square fit to
the Maxworthy (1997) model is approximately a quarter that for the Phillips (1966) model.

captured in five reservoirs (see figure 2), and their density was measured. Samples were
collected after the downslope flow became steady, typically about 30 min after the
release of dense source into the porous pans. It took about 15–20 min for collection
of a suitable sample by slowly withdrawing the bottom fluid from the catch basins.

The steady-state values of g′ for a collection of experiments performed over a range
of values of B0, h and W = 15.5 or 31 cm are plotted in figure 4. The error bars show
the maximum difference between the values of g′ measured at reservoirs 1–5. It is
likely that these errors are as a result of slight non-uniformity of the buoyancy source,
however some of the spread may also be due to non-uniformity in the source of fresh
fluid (see figure 2) setting up a systematic flow.
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In figure 4(a) the measured values of g′ have been plotted against the independent
quantity, (B0W )2/3/h, which appears to collapse the data reasonably well. The solid
line shows a linear least-square-root fit to the data and is of the form

g′ = (7.40 ± 1.86)
(B0W )2/3

h
. (3.1)

This scaling for g′ is in accordance with a model proposed by Phillips (1966). In this
model Phillips, using dimensional analysis and buoyancy conservation, wrote down
scalings for the buoyancy, g′, and velocity, U , in a two-dimensional convective system
closed at one end and fed by a surface buoyancy flux. Applying this model to the
present case:

g′ =
(B0W )2/3

h
F1(z/h), U = (B0W )1/3F2(z/h) (3.2)

where W is the source width. Since in the present experiments g′ was always measured
as the average of the density of the fluid in the thin bottom layer, F1 and F2 will be
constants. With F1 set equal to a constant, (3.2) reduces to the relationship given by
(3.1). Phillips applied (3.2) to field data obtained in the Red Sea, and showed that it
provided a good model for the data.

More recently, however, Maxworthy (1996, 1997) has proposed an alternative
model for convectively driven mean flow in a partially enclosed system. Based on
observations of convection in a long channel, closed at one end and having the
opposite end open but with a hydraulic control condition (Maxworthy 1996, 1997;
Grimm & Maxworthy 1999), a three-layer model was suggested. In this model, two
active upper fluid layers overlayed an, essentially passive, third lower layer. When a
negative buoyancy flux was applied to the free surface, the two active layers flowed in
opposite directions, with the top layer flowing towards the close end of the channel
and the layer below moving towards the open, hydraulically controlled end. As the
top layer moved towards the closed end it became progressively more dense, owing
to the surface buoyancy flux, until it reached the closed end where the density closely
matched that of the lower layer. At this location the fluid in the top layer descended
and mixed, to feed the lower layer. Experiments by Grimm & Maxworthy (1999)
have confirmed that there was negligible mixing between the layers over much of the
length of the channel, except in the vicinity of the closed end. Thus, in addition to
making use of the continuity of buoyancy, as done by Phillips (1966), the observation
was made that in many cases buoyancy and convective terms in the vorticity equation
are not necessarily of the same order, and instead a hydraulic control condition was
applied at the open end. This condition takes the form of a constant composite
Froude number, similar to that used in standard hydraulics for a single fluid layer.
Studies of such composite flows include those of Armi (1986), Farmer & Armi (1986)
and Lawrence (1990). Using these constraints, one obtains

g′ =
B

2/3
0 W

h4/3
F3(z/h), U = (B0W )1/3F4(z/h). (3.3)

This scaling for g′ is compared with the present data in figure 4(b), which shows
the values of g′ from figure 4(a) plotted against the independent quantity B

2/3
0 W/h4/3.

The level of collapse in this figure is better than the scaling presented in figure 4(a),
and applicability of both scalings is discussed below. Setting F3 equal to a constant
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in (3.3) gives

g′ = (3.08 ± 0.43)
B

2/3
0 W

h4/3
(3.4)

where the constant F3 has been evaluated using a least-squares fit, shown as a solid
line in figure 4(b).

Even though the scatter of g′ between the measurements and the least-squared fit
to the Maxworthy (1997) model is substantially smaller than the fit to the Phillip’s
(1966) model the latter still provides a reasonable explanation for the present data.
The most probable reason for this is that the flow below the sources was actually
a combination of the two. Maxworthy’s model assumes, based on experiments, that
two active layers would be formed, connected by an overturning region at the closed
end. Grimm & Maxworthy (1999) found that this region occupied about 1–2 channel
heights i.e. only about 5–10 % of the length of their long channel. Flow in this actively
overturning region was exactly of the type described by the model of Phillips (1966).
Thus one can think of the total flow, in the present case, as being a combination of a
two-layer flow, as in Grimm & Maxworthy (1999), and an actively overturning flow,
as in Phillips (1966). The extent to which one or the other dominates depends on
the exact geometry being considered. In the present case it seemed that the geometry
was such that both were important and this led to the ambiguity in deciding between
them. This point of view is supported by the experiments of Finnegan & Ivey (1999),
in a convectively driven exchange flow in a short channel, in which no two-layer
flow was formed, the whole flow was in the actively overturning mode and was best
described by the Phillips (1966) model.

3.2. Convection in a rotating fluid

3.2.1. Experiments with source widths W = 31 and 15.5 cm

As with the non-rotating case, shortly after the supply of dense fluid to the
buoyancy source was switched on, a thin dense layer (Ekman layer) began to flow
down the slope. However, because of the Coriolis force the direction of the flow
was diverted to the left, when looking down the slope, as observed, for example, in
similar experiments by Lane-Serff & Baines (1998, hereafter referred to as LB). For
most of the rotating cases in the present experiments, the viscous downslope flow
eventually became unstable and formed a series of breaking waves with crests that
lay approximately perpendicular to the direction of the downslope flow. These waves
are similar to the waves that were observed by LB in both rotating and non-rotating
experiments and had the appearance of internal roll waves. Later, a boundary current
could be observed which ran downslope along the left wall. In some experiments
vortices in the dense layer emerged from directly beneath the bouyancy source.

The values of g′ measured on the slope and in the boundary current are considered
below. The scaling for g′ by Maxworthy (1997) (shown in figure 4b), will be applied
to the data, as it provided a better fit to the data for the non-rotating experiments.
The non-dimensional values of g′, G′ = g′h4/3/B

2/3
0 W , are plotted in figure 5 with

respect to the parameter P = (B0/f
3h2)1/2W/h to introduce the effects of rotation.

This parameter combines the effect of rotation through the natural Rossby number
Ro∗ = (B0/f

3h2)1/2, as found in experiments of Maxworthy & Narimousa (1994) and
numerics of Jones & Marshall (1993) and Cui & Street (2001). The addition of the
scaling W/h was necessary to bring the data into better agreement, as was found also
in Maxworthy (2002), after using Ro∗ alone resulted in considerable data scatter. The
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b = 3.86 ± 0.54 for the mean of dense flow on the slope, (g, h) G′
K = 3 to 7 for the Kelvin

current (marked as 6 in figure 2), and G′
s for bottom flow measured on the middle-hand of

the shelf close to the left-hand wall (marked as 7 in figure 2).

scaling appears to collapse the data for the range of B0, W , h and f of the present
experiments.

G′
b1−5

in figure 5(a–e) is calculated from measurements at the bottom of each of
the five reservoirs downslope, marked as 1–5 in figure 2. Figure 5(f) shows a straight
average of these measurements, i.e. G′

b =(G′
b1

+ G′
b2

+ G′
b3

+ G′
b4

+ G′
b5
)/5. G′

K in
figure 5(g) shows the buoyancy measured in the Kelvin current, marked as 6 in
figure 2, and G′

s in figure 5(h) shows the buoyancy of the bottom flow on the middle
of the shelf and close to the left wall (marked as 7 in figure 2). Here subscripts b, K

and s stand for bottom layer, Kelvin current and flow on shelf respectively.
Figure 6 presents schematic diagrams of the mean flows observed, using dye,

beneath the buoyancy source in the present experiments. Each diagram shows a plan
view of the entire buoyancy source with the slope located above the source region.
The solid arrows show the mean flow in the upper layer of the exchange flow, which
descended to form the lower layer in a region close to the backwall of the tank, located
on the opposite side of the buoyancy source from the slope. The dashed arrows show
the mean flow in the dense lower layer. For the non-rotating experiments (figure 6a),
the mean exchange flow was approximately two-dimensional, with the fresh fluid
entering at one location in the upper layer, then leaving directly below as dense fluid
in the lower layer. The dense source was approximately uniform in the horizontal
direction. In the rotating case (figure 6b), however, the exchange flow was changed
by the Coriolis force. It was observed that the fluid in the upper layer tended to be
diverted to the right, looking downslope, as it flowed under the source towards the
backwall of the tank. In the lower layer a large portion of the dense fluid flowed
along the whole length of the backwall of the buoyancy source, eventually reaching
the left wall of the tank and forming a boundary Kelvin current, marked as s4 at the
shelf–slope edge in figure 6(b). Near the right sidewall (see figure 6(b) there was much
less motion in the across-slope direction (because of the presence of the wall) and the
exchange resembled that in the non-rotating tank. This location also corresponded
to one of the three regions (s1, s2 and s3 in figure 6b) where domes of dense fluid
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appeared from beneath the source. At large rotation rates, domes or eddies of dense
fluid were generated periodically at s1 and then propagated towards the left wall. The
two regions, s2 around the middle of the shelf and s3 close to the left wall, were also
sources of domes of dense fluid. It is noted that vortices, if created, appeared almost
stationary at s2 and s3. With the wider dense source, e.g. when its width equalled that
of the shelf, i.e. W = 31 cm, the mean dense flow was found to be weak at s2 and
eddies never formed there. At very large rotation rates, vortices generated at s3 could
even propagate towards the right-hand side, i.e. against the Coriolis force. Details of
these flow regimes can be found in § 3.3.

3.2.2. Experiments with a narrow, W = 2 cm wide, source

To investigate changes in the flow with the width of the buoyancy source, rotating
experiments were performed with a very narrow shelf and source (W =2 cm rather
than W = 31 cm or 15.5 cm), i.e. one not much larger than the width of the Kelvin
current along the backwall. In these experiments the observed behaviour of the mean
flow under the buoyancy source was qualitatively similar to the experiments with
W = 31 cm or 15.5 cm, and suggests that the exchange flow depicted in figure 6(b) is
robust to changes in the source’s aspect ratio.

Even though the dense outflow became non-uniform along the shelf in the rotating
experiments, turbulent convection underneath the dense source seemed not to be
affected, except at the left wall where a strong boundary current was generated. It
is noted that the mean reduced gravity of the bottom flow measured at reservoirs
1 to 5 in the rotating experiments was G′

b = 3.86 (figure 5f ), this being different to
the non-rotating experiments G′

b = 3.08 (equation (3.4)). Figures 5(g) and 5(h) show a
large increase in the density for the Kelvin current and the dense flow close to the left
side as P decreased. This implies an increased effect due to the boundary (both back
and sidewalls) when the ratio L/W or the rotation rate became large (i.e. smaller P ).
The effect of the proximity of the right wall also caused a notable increase of the
density (measured at the downslope reservoir 1) as P decreased (shown in figure 5a).
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3.3. Flow morphology

This section concerns the morphology of the structures in the bottom layer as they
formed on the shelf and flowed down the slope. The flow conditions can be divided
into five regimes depending on the value of P = (B0/f

3h2)1/2W/h, the modified natural
Rossby number.

3.3.1. Non-rotating experiments, i.e. P = ∞: laminar Ekman layer

In this case, the downslope bottom layer flowed perpendicular to contours of
constant depth. It stayed laminar and no waves or eddies were visible. The layer
was observed to be sensitive to external noise and would produce waves if slightly
disturbed, indicating the existence of a convective type of instability.

3.3.2. 14<P < 45: roll waves formed on the Ekman layer

With the tank rotating, the bottom layer still continuously flowed down but at an
angle to contours of the constant depth under the effect of the Coriolis force, e.g. 70◦

at the modified, natural Rossby number P =18. For values of P < 45, roll waves
were produced in the dense bottom layer.

In all of the rotating experiments a boundary Kelvin current (see Griffiths &
Hopfinger 1983) was formed on the left wall of the tank, when looking downslope,
which ran down the slope (marked as s4 in figure 6b). The majority of the dense fluid
in the boundary current appeared to come directly from beneath the buoyancy source
(viewed by adding dye to selected regions of the buoyancy source). The density of the
boundary current was larger than the dense fluid on the slope.

3.3.3. 5.5 <P < 14: periodic release, or ‘surges’, of dense fluid

Here no distinct vortices were observed; however a periodic release of dense fluid,
or ‘surges’, appeared from underneath the dense source and flowed downslope. This
represents a transition regime, as the dense flow changed from emerging along the
whole shelf (at P > 14) to conditions where it started to collect in localized regions
(at P < 5.5). The period of release was equal to one rotation period, T . As the tank
rotated faster, the angle (to contours of constant depth) of the bottom flow decreased,
e.g. 65◦ at P = 66. Roll waves formed in the bottom layer on the slope.

3.3.4. P < 5.5: eddies propagating along the shelf or slope

In all of the experiments where vortices were produced, they were observed to
emerge from the buoyancy source in three localized regions, s1, s2 and s3 in figure 6(b).
The localized sources of vortices at s1 and s3 are believed to be a result of the close
proximity of the right- and left-hand walls. This is different from experiments which
have used an axisymmetric topography such as a truncated cone (Jacobs & Ivey 1998;
LB) or a flat, circular, horizontal bottom (Maxworthy & Narimousa 1994; Narimousa
1997), where vortices have been reported to be produced randomly around the full
circumference of the buoyancy sources.

Observations by LB surggest that the flux of dense fluid in a layer moving downslope
is modulated by the presence of vortices/eddies. This was also true in the present
experiments where the release of a surge of dense fluid accompanied the production
of an eddy. An example of such a release may seen in figure 7 with eddies marked
as e1, e2 and e3. After the initial release, the velocity field of the eddies appeared to
inhibit the supply of fluid to the downslope flow. Once created, the eddies (e1), moved
along the slope (figure 7a) under the effect of the Coriolis force, i.e. from right to left
when looking downslope. As the vortices moved across the slope, they approximately
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Figure 7. Bottom water formation for small P = (B0/f
3h2)1/2W/h when eddies were generated

with a period of 2T . (a) At P = 4.9 and W = 31 cm, meso-scale eddies were either stationary,
e.g. e3, or propagated along the slope, e.g. e1 (the arrows point in the propagation direction).
(b) At smaller P , e.g. P = 2.2 with smaller W = 15.5 cm, a stationary eddy e2 appeared around
the centre of the shelf. At the same time eddy e3 propagated to the right, i.e. against the
Coriolis force.

followed lines of constant depth. The eddies (e1) were produced at s1 with a period
2T , twice that of the rotation period.

For smaller values of the modified natural Rossby number, P , the progress of eddies
across the slope was not regular, with eddies wandering back and forth in the across-
slope direction. With P < 2.8, especially with the relatively narrow dense source,
W = 15.5 cm, a visible displacement in the opposite direction to the Coriolis force
was observed in the eddies close to the left-hand wall, e.g. e3 in figure 7(b) (e3 moved
from left to right when looking downslope). Similar counter-intuitive displacements
have been reported by Mory, Stern & Griffiths (1987) and LB. One probable reason
for the present observations was the increased effect of the concave water surface at
large rotation rates. This concave effect caused a slightly higher water depth at the
left- and right-hand walls than at the tank centre.

Dense fluid was observed to be released from the eddies and then propagated
downslope. The angle to contours of constant depth reduced as P decreased, e.g. 55◦

at P = 24 (figure 7a), and 50◦ at P = 2.2 (figure 7b).

3.4. Wave and eddy production

3.4.1. Criteria for eddy formation

LB presented a model and criteria for the generation of vortices in rotating flows
on a slope, also see Condie (1995) and Baines & Condie (1998). For a viscous flow
moving along and down a slope, i.e. an Ekman type layer, LB among others have
suggested appropriate scalings for its alongslope velocity, cν = αg′/f , when gravity
balances the Coriolis force, and the Ekman layer thickness dν = (2ν/f )1/2, where α

is the slope angle from the horizontal, 15◦ in the present experiment, and ν is the
kinematic viscosity of water. Based on their model, LB stated that vortices can only
form if the loss of dense fluid due to viscous downslope drainage into the viscous
layer described above does not dominate the flow. For an inviscid current moving
along a slope (see Griffiths & Hopfinger 1983), LB introduced an alongslope length
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Figure 8. Dense flow geometry. (a) Estimation of the buoyancy flux in the downslope current.
As shown in the text, it is assumed that Qkg

′
k � Qsg
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s and this was found to be so a posteriori.

(b) Volume fluxes of dense flow from under the source and in the downslope Ekman layer.
Here, d1 is the thickness of the Ekman layer based on buoyancy flux estimation in (a), and v
is the downslope velocity of the Ekman layer as found at the end of this subsection § 3.4.1.

scale Y over which dense fluid drained from the current,

Y =
Q

cνdν

=
Qf 3/2

g′α(2ν)1/2
, (3.5)

where Q is the volume flux of fluid into the inviscid current.
The ratio of this alongslope drainage distance to the width of the current was taken

to be a measure of the relative importance of viscous drainage from the current, and
is given by F = Y/LRo where the width of the current was taken to scale with the
Rossby radius of deformation LRo = (g′d)1/2/f (following the results of Griffiths &
Hopfinger 1983), and d is the depth of dense current upstream. For vortices to form,
this ratio must be sufficiently large, so that the distance the current travels, Y , before
the volume flux of dense fluid, Q, has drained downslope is significant compared with
LRo.

Unlike the experiments of LB, in which Q and d were set, in our case the volume
flux of dense fluid from the buoyancy sources and the height of the dense current
on the shelf were dependent quantities. Before estimating the downslope volume flux
Q, it was necessary to verify that the amount contributing to the Kelvin current
along the sidewall, Qk , was small compared with Q (see figure 8a). The triangular
cross-sectional area of the Kelvin current was approximately L2

k/2, where Lk is the
Rossby radius of the fluid in that current, given by B1/3/f , since a posteriori we show
that the downslope velocity is of order B1/3. Thus the buoyancy flow rate through the
Kelvin current is L2

kB
1/3/2. Then the ratio of the flux in the Kelvin current to that of

the dense fluid source becomes

L2
kB

1/3g′
k

2Qsg′
s

=
Bg′

k

2f 2Qsg′
s

=
Qsg

′
sg

′
k

2Lf 2Qsg′
s

=
g′

k

2Lf 2
, (3.6)

where Qs and g′
s are the volume flux and the reduced gravity for the dense fluid

source, and Q and g′
b are corresponding values for the downslope bottom layer. This

ratio is typically less than 0.15 and to a good degree of approximation Qsg
′
s ≈ Qg′

b.
The height of the upstream dense flow, i.e d in LB, was observed to be around h/3

on the shelf in the present experiments, where h is the height of the buoyancy source
above the shelf (figure 8b). This thickness, d = h/3, is consistent with the edge of
the shelf being a hydraulic control. For most cases, the thickness of upstream dense
flow was much larger than that of the downslope Ekman layer, i.e. d 	 dν . Instead
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Figure 9. Vortex and Ekman layer production. (a) Flow regimes at different Y/L and
P = (B0/f

3h2)1/2W/h. (b) The downslope velocity of the Ekman layer, v, scales with (B0W )1/3,
i.e. vνf/B0W = 1.5νf/(B0W )2/3. (c) The measured eddy size (diameter D) versus the Rossby
deformation radius, 2LRo = 2(g′h/3)1/2/f . (d) The eddy velocity alongslope as a function of
the ‘Nof speed’, cν = g′α/f , Nof (1983). Triangles: W = 15.5 cm, circles: W = 31 cm; solid
symbols, eddies; grey symbols, periodic release; open symbols, continuous release.

of the Rossby deformation radius, LRo , used by LB to scale the unknown alongslope
length of the dense current upstream, here, the length of the dense source is directly
related to the length of the dense current, L = 120.5 cm (also see Condie 1995). Then
F =Y/L = Q/Ldνcν a measure of the relative importance of viscous drainage from
the dense source, was used to specify the flow regime.

Figure 9(a) is a regime diagram using the parameter space prescribed by F = Y/L

and P =Ro∗W/h = (B0/f
3h2)1/2W/h (the modified natural Rossby number). Each

of the rotating experiments is represented by a different symbol depending on the
flow observed. The solid symbols show experiments in which definite evidence of
vortices/eddies was observed, the grey symbols show those in which there were
periodic releases of dense fluid, and the open ones show cases where continuous
release of dense fluid was generated. Similar to observation by Condie (1995), LB and
Baines & Condie (1998), eddies were generated at relatively large F , despite differences
in the source condition. The criterion reported in LB, F � O(1), is larger than the
value observed in the present experiments, F � 0.3. This is reasonable considering the
fact that our calculation is based on a larger alongslope length scale, L > LRo.

The downslope speed of roll waves was used as an approximate estimate of the
downslope velocity v of the dense bottom flow by assuming very approximately that
the waves were being convected with the mean velocity of the current, but see below.
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These measurements are plotted in figure 9(b). A scaling for the downslope velocity
of an Ekman layer proposed by Nagata et al. (1993) and Baines & Condie (1998),
v ∼ αg′/f , was investigated and found to be inappropriate in the present case. A more
appropriate scaling for v, obtained by dimensional analysis, is proposed below and
will be shown to model the present data well.

Dimensional analysis using the independent variables of the downslope flow, B , f

and ν gives

v =
B

νf
· func

(
νf

B2/3

)
(3.7)

where B/νf is one possible velocity scale and νf/B2/3 is a dimensionless parameter.
Since α is a constant here, it is ignored. By assuming a power-law relationship for the
function func, velocity scales can be constructed of the form

B

νf

(
νf

B2/3

)β

, (3.8)

where β is an arbitrary integer.
Figure 9(b) suggests that a linear relationship exists between B/νf and νf/B2/3, i.e.

β = 1, so that

v

B/νf
= 1.5

νf

B2/3
=⇒ v

B1/3
= 1.5. (3.9)

The coefficient 1.5 is obtained from the linear least-square fit to the experiment data.
Note that in figure 3, the scaling for the time before the system reached its quasi-
steady state also implies that the downslope velocity scales as (B0W )1/3 =B1/3. It is
this result that was used to evaluate (3.6). Here, ignoring the slope angle effect α in
obtaining (3.9) means that the result is only valid for the particular value 15◦ tested
in our experiments.

3.4.2. Eddy dynamics

The eddies produced in the rotating experiments took the form of isolated ‘domes’
of dense fluid which moved across the slope, leaking dense fluid into the Ekman layer
as they did so. The ambient fluid directly above the domes was observed to rotate
cyclonically, using particles and dye on the water surface. The vorticity of the domes
could not be determined. However, it was expected to be anticyclonic, in accordance
with related experiments by Maxworthy & Narimousa (1994), Narimousa (1997), LB
and Jacobs & Ivey (1998).

Eddy size and propagation speed were measured for those generated at the right-
hand side of the tank that then migrated to the other side of the tank, along the slope,
i.e. from s1 to s4 in figure 6. Eddies formed at other locations had the similar size but
were either stationary or moving irregularly. Figure 9(c) shows the measured eddy
diameter D plotted against the Rossby deformation radius LRo, together with the line
D = 2LRo . As can be seen from the figure, the data are very scattered. However, an
eddy diameter of around twice LRo appears to best represent the data.

Figure 9(d) shows the eddy propagation speed along the slope in those experiments
where the migration was regular enough to make measurements. As can be seen
from the figure, the eddy propagation speed alongslope scales well with a relationship
proposed by LB to model an isolated volume of dense fluid that moved along a slope
under the balance of gravity and the Coriolis force, via the ‘Nof speed’, cν = αg′/f
(Nof 1983).
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To model the rate at which eddies are generated, LB assumed that if domes of
dense fluid can be approximated by cylinders of radius LRo and height d , then the
time for each cylinder to fill may be expected to scale as

πL2
Rod

Q
=

2π

f
= T/2, (3.10)

where πL2
Rod is the volume of each cylinder and Q ∼ dLRou/2, u ∼ (g′d)1/2 is the

velocity of the current given by a standard gravity current model (see Griffiths &
Hopfinger 1983).

The mean time interval Tint between the formation of successive vortices, i.e. those
represented by solid symbols in figure 9, was found to be around two rotation periods
2T . Following (3.10), this corresponds to Tint = 4 × (2π/f ). Although LB modelled
their vortex generation rate differently from the present study, at large f , which is in
keeping with the range of f covered here, their modelling gives Tint =4.8 × (2π/f ).
The value of the constant in LB’s relationship is close to the present value, which
supports the use of the above modelling. The mean time interval between successive
releases of dense fluid when vortices were not generated, i.e. the grey symbols for
dense surges in figure 9, was measured to be around one revolution period, T .

4. Convection into and down a submarine canyon
Topographic variations, e.g. submarine canyons, can contribute significantly to the

local downslope flow by channelling the heavy basal fluid (Baines & Condie 1998).
The effect of a canyon has been introduced into the present investigations over a wide
range of flow conditions. The canyon was located at around one third of the length
of the shelf–slope and stretched from the middle of the shelf to the bottom of the
slope (see figure 2). It was thought that positioning the canyon L/3 away from the
left wall (when looking down slope), rather than the centre, would mean that the flow
into the canyon would not be influenced by the eddy production at the right-hand
wall.

Again, the density of the downslope bottom fluid (using reservoirs 1−5 in figure 2),
the Kelvin current (marked as 6) and the bottom fluid channelled into the canyon
(marked as 8) was measured.

4.1. Convection in a non-rotating fluid

The reduced gravity of the bottom fluid on the slope and in the canyon are plotted
in figure 10 following the scalings proposed by Phillips (1966) (figure 10a) and by
Maxworthy (1997) (figure 10b). As with figure 4, there is a slightly better collapse of
data using Maxworthy’s (1996, 1997) scaling.

By comparing figure 10 and figure 4, it can be seen that the reduced gravity of
the downslope flow (outside the canyon) is not much changed by the presence of
the canyon. The slight difference is believed to be due to a small systematic error
caused by the difference in the alignment of the shelf–slope structure before and after
removing the tank insert when the canyon was cut.

For the largest values of (B0W )2/3/h and B
2/3
0 W/h4/3, the density in the canyon

becomes significantly larger than the value measured in reservoirs down the slope.
Under this condition, the canyon (extending partly across the shelf) could channel
away part of the dense fluid directly beneath the source trays before it was
mixed/diluted further with fresh water. The errors between the density of the five
reservoirs is larger than in figure 4, which is likely to be due to the regional effect of
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Figure 10. The reduced gravity, g′, of the dense downslope flow with a canyon in a
non-rotating fluid is plotted following two different scalings, (a) g′

b = (7.47 ± 2.60)(B0W )2/3/h

proposed by Phillips (1966) and (b) g′
b = (3.40 ± 0.60)B

2/3
0 W/h4/3 proposed by Maxworthy

(1996, 1997). The mean of the data collected at the five reservoirs, 1–5, is plotted with the error
bars reflecting the difference between the maximum and the minimum. Data collected in the
canyon are marked by a dotted line and the asterisk symbol. A linear least-square fit to data
collected in the canyon gives G′

c = 13.9 following the Phillips model, and G′
c = 5.55 when fitted

to the Maxworthy model. Values are larger than that for the down slope flow, i.e. G′
c > G′

b .
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Figure 11. The non-dimensional values of g′, G′ = g′h4/3/B
2/3
0 W , are plotted for flow

with a canyon against the independent quantity (the modified, natural Rossby number),
P = (B0/f

3h2)1/2W/h. (a–e) G′
b1−5

is calculated from measurement at the bottom of these five

reservoirs downslope (marked as 1–5 in figure 2), again G′
b = 1 to 5 except for the one just

downstream of the canyon, i.e. G′
b4

= 0 to 2 for reservoir 4; (f) G′
b =3.30 ± 0.44 for a straight

average of dense flow on the slope collected in reservoirs 1–5. (g) G′
K = 1 to 5 for the Kelvin

current downslope (marked as 6 in figure 2); and (h) G′
c = 6 to 11 for bottom flow in the

canyon (marked as 8 in figure 2).

the canyon and, possibly, the introduction of non-uniformity during the shelf/slope
reconstruction.

4.2. Convection in rotating fluid

The buoyancy of the bottom flow channelled in the canyon (figure 11h), was found
to be significantly larger than that of the downslope flow and Kelvin current
(figure 11a–e, g). The density of the downslope flow to the left of the canyon
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Figure 12. Bottom water formation for small P = (B0/f
3h2)1/2W/h, with a canyon cut from

the middle of the shelf to the bottom of the slope: (a) at P = 4.8 and W = 31 cm (a similar
parameter space is covered in figure 7a before the canyon was cut) the eddy e1 and the
downslope Ekman layer were able to travel across the the canyon; (b) at P = 3.5 with
W = 15.5 cm (a similar parameter space is covered in figure 7b without the canyon) again the
eddy e1 was able to cross the canyon on the shelf.

(when looking downslope), shown in figure 11(d), can clearly be seen to be reduced
by the presence of the canyon, particularly at small values of P . In this case, the
canyon clearly interfered with the downslope flow and captured most of the dense
fluid passing through, leaving the bottom fluid downstream with a reduced density.
A slight density reduction existed in the straight average of downslope dense flow,
G′

b = (G′
b1

+ G′
b2

+ G′
b3

+ G′
b4

+ G′
b5

)/5 (G′
b = 3.30 in figure 11f ), compared with the

value before the canyon was cut (G′
b =3.86 in figure 5f ). The value of G′

K in the
Kelvin current (figure 11g) was also somewhat reduced by the presence of the canyon
compared to before the canyon was cut (see figure 5g). If the flow above the shelf is
considered (see figure 6b), then it may be expected that a canyon (extending partly
across the shelf) will channel away part of the dense fluid that flows along the
backwall before forming a downslope Kelvin current. Thus, the effect of canyon here
also reduced the supply of the densest fluid to the downslope Kelvin current, as
shown in figure 11(g).

4.3. Flow morphology

The characteristics of bottom water flow regimes (namely, continuous release of dense
flow with roll waves appearing in the downslope Ekman layer, periodic surges of
dense flow, and of eddies) were observed to be similar to those without the canyon
(figure 9a), even though the existence of the canyon weakened the Ekman layer and
the eddies that propagated towards the canyon.

For all the experiments, the canyon entrained dense fluid from the bottom layer
and channelled it downslope. This withdrawal started from the middle of the shelf
at the canyon head and the current increased with further injection of fluid from
the Ekman layer as the channelled fluid descended towards the bottom of the slope.
An experiment with a relatively small value of the modified natural Rossby number
P = (B0/f

3h2)1/2W/h was chosen for figure 12(a). It can be seen that both the eddy
e1 and the downslope Ekman layer with superimposed waves travelled across the
canyon. In figure 12(b) under even smaller P , part of the dense fluid from the eddy
e3 moved towards the canyon against the Coriolis force.
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Figure 13. Surface cyclonic vortices. (a) Under the same condition as in figure 12(a) with
P = 4.8, W = 31 cm, surface cyclonic vortices illustrated by dye dropped onto the water
surface. (b) A radar image (240 km by 360 km) taken by the Shuttle Imaging Radar-C (image
provided by Jet Propulsion Laboratory) shows two large ocean eddies next to sea ice in the
Weddell Sea, Antarctica, on October 5, 1994.

Surface cyclonic vortices made visible by dye dropped onto the water surface are
shown in figure 13(a). They appear to be similar to cyclonic ocean eddies observed
in the Weddell Sea (figure 13b from Jet Propulsion Laboratory Image Gallery†). The
latter eddies were made visible as freely-floating sea ice was swept around in their
rotating currents.

5. Conclusions and discussion
The experiments reported here have investigated convection and bottom water

formation in a rotating fluid with a sloping bottom. The aim of the experiments
was to model the exchange flows occurring over a continental shelf in polar regions
(e.g. the Weddell Sea, Ross Sea or Arctic coast) and to study their behaviour on the
continental slope.

In the experiments a negative buoyancy flux was applied to the free surface of the
fluid directly above a horizontal shelf. The dense convection products that formed
over the shelf flowed under the effects of gravity and rotation over a plane slope,
fixed at 15◦ to the horizontal. For experiments performed in a non-rotating fluid, two
existing models (proposed by Phillips 1966 and Maxworthy 1996, 1997, respectively)
were tested using the experimental data. For the parameter ranges considered, both
models provided a good collapse of the data, possibly suggesting that the present
flow type lay somewhere between the two models proposed.

Experiments were also performed with the tank rotating. The three-dimensional
turbulence driven by convection over the shelf was not notably affected by rotation
(consistent with the findings of Maxworthy & Narimousa 1994, Narimousa 1997
and Jacobs & Ivey 1998). The density of the dense layer on the slope also was not
strongly affected by rotation, as can be seen by comparing values of G′

b, 3.08±0.43 in
figure 4(b) and 4 ± 0.5 in figure 5(f ). However, the mean exchange flow was changed.

† http://southport.jpl.nasa.gov/polar/sarimages.html.
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This is shown schematically in figure 6. A feature of some of the rotating experiments
was the generation of vortices. These vortices might take the form of anticyclonic
domes of dense fluid (with cyclonic vorticity in the fresh ambient directly above them).
We suggest this direction based on the assumption of vorticity conservation though
which surface cyclonic eddies could have formed anticyclonic eddies in the bottom
dense layer. The eddies in the bottom layer either were stationary or moved across the
slope approximately following lines of constant depth. Vortices were not generated in
all of the rotating experiments, and criteria based on parameters, the modified natural
Rossby number P = (B0/f

3h2)1/2W/h and the relative importance of viscous drainage
from the dense source F = Y/L = Qf 3/2/αg′(2ν)1/2W , were found to be applicable
to the present experiments. Under certain conditions, the frequency at which the
vortices were produced compared favourably with similar experiments by LB, and
the eddies, when produced, had a size comparable to the Rossby deformation radius
LRo = (g′h)1/2/f . When eddies propagated along the slope (starting from position s1

in figure 6b), their speed was shown (in figure 9d) to be well represented by cν = αg′/f
(Nof 1983), in accordance with a model used in LB.

Unlike many experiments which have used an axisymmetric topography (see
Maxworthy & Narimousa 1994; Narimousa 1997; LB; Jacobs & Ivey 1998), the
presence of the sidewalls of the tank was found to have a profound effect on the
generated vortices, which emerged from the buoyancy source only at localized regions.
In particular, the region close to the right-hand wall, when looking downslope, was
the location where most of the dense fluid emerged from under the buoyancy source,
often in the form of a periodic release of fluid. A portion of the dense fluid flowed
along the backwall of the tank. It then turned and formed a boundary current which
flowed down the slope against the left-hand wall in the form of a Kelvin current
in which the Coriolis force balanced transverse pressure gradients (see figures 2 and
6b). The flux through the Kelvin current has been shown to be small compared with
downslope flux.

Bottom water formation has been studied extensively here over a wide range of B0,
f , h and W . For different conditions, the bottom layer had different characteristics:
e.g. quasi-steady laminar flow at P = ∞; continuous release of dense flow with roll
waves forming in a downslope Ekman layer as 14 <P < 45; periodic release of dense
flow at a frequency of one revolution, 1/T , when 5.5 <P < 14; and stationary and
propagating eddies for P < 5.5, which were generated with a period of 2T . All eddies
observed in our case leaked dense fluid into the Ekman layer. For all the rotating
experiments, roll waves were observed to form and propagate downslope with the
Ekman layer. The wave speed was used to crudely estimate the total downslope
velocity of the Ekman layer and it was found to be of the form v ∼ (B0W )1/3. The
Ekman layer was observed to travel down the slope towards the left-hand wall at
an angle to contours of the constant depth. This angle decreases as the value of P

decreases, e.g. 70◦, 65◦, 55◦, 50◦ for P = 18, 8.1, 4.9, 2.2 respectively.
Attempts have been made to relate the results of these experiments, e.g. estimates of

bottom-water density, to observations in the seas around the Antarctic continent but
criticism, from various sources, led to their being abandoned. The main problem lies
in the paucity of observational data at the geographical locations where one would
expect the heavy bottom water to be formed. For example, in Whitworth et al. (1998)
the emphasis is on water properties near the shelf break; in particular, they clearly
show the approximately 200 m thick dense-layer flowing down the continental shelf
in clear agreement with the present experimental observations. However, the actual
regions of dense water formation were likely to have been outside their observational
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area. In general actual bottom topography and depth variations are far more complex
than assumed in the present simple model. Also, estimates of the magnitude of the
surface buoyancy flux in the natural situation were not available and so one was
left to guess a value based on dubious assumptions. Finally, the widths, total areas
and locations of the regions subjected to this flux are highly variable depending,
as they do, on the existence of areas of open water, polynas, that are transitory in
time and unevenly distributed in space (see e.g. Bromwich et al. 1998). Thus, the
present model, while it gives a valuable qualitative picture of the natural flow, is,
unfortunately, marginally useful as a tool for predicting the details of any existing set
of field observations.

An attempt is made to relate our experimental observations of roll-wave formation
to theories looking at this matter. One of a few such theories is the Swaters (2003)
theory, which considers a thin viscous layer underlying a stratified upper deep layer,
with the ‘roll waves’ that develop on the former forcing internal waves in the latter.
As an example consider the waves observed in figure 7(a, b). Here the wavelength
varies from about 2 to 5 cm with wave fronts propagating at angles between 50◦ and
55◦ to the lines of constant depth. Their total velocity is of the order of 3 cm s−1 and
this magnitude is the result of adding the velocity, V , of the unknown underlying
mean flow to that of long waves with velocity (g′hν)

1/2, with hν the thickness of the
viscous thin layer.

Here we concentrate on the lower layer in the Swaters (2003) theory, since in
the present experiments the upper layer was not stratified. The theory contains two
independent variables that are known exactly, i.e. f and bottom slope, tanα, and
four that are dependent and have to be either measured or estimated, i.e. bottom
layer reduced gravity, g′, thin layer thickness, hν , a modified drag coefficient, CD and
dimensionless Coriolis parameter, F. Values of g′ come from direct measurements,
i.e. equations (3.1) and (3.4), while for hν , F and CD one needs either a model or an
interpretation of the theory that is consistent with the observations outlined above.
In Swaters (2003) the following quantities are defined: the dimensionless Coriolis
parameter F = (4π/T )hν/g

′1/2
/tan α, where T is the period of rotation, and modified

drag coefficient CD = Cd/tan α, where Cd is the drag coefficient. In order to proceed,
it is necessary to make some simplifying assumptions. First, in the Swaters expression
for the mean velocity, V , if the term in F is set to zero then V = (g′hν)

1/2/C
1/2
D . This

approximation will be justified after the final result is presented. Eliminating the term
(g′hν)

1//2 from the expressions for V and F gives

F = 4πV C
1/2
D /T g′tan α.

At this point it is necessary to guess a value for V , with T , g′ and tan α known, to find a
relationship between F and CD . The question arises of how to choose the value for V

in a logical way. It is clearly less than the 3 cm s−1 total wave celerity but to go further
use must be made of the theoretical results for the instability wavenumbers in the
downslope, l, and crossslope, k, directions. First, for the present case tan −1l/k = 50◦.
Secondly, the total wavenumber (l2 + k2)1/2 = m, must be small enough that the
wavelength, l = 2πhν/m is large and in the range 2 to 5 cm. The only possible location
in the instability diagrams of Swaters (2003) where these conditions are met is in
the lower right-hand corner of his figures 7, 8 and 11, very close to the marginal
stability curve. After trying several possibilities a value of V = 1.3 cm s−1 seemed to
give good results, with F = 0.150 and CD = 0.265. Here, as best as can be judged from
figures 7 and 8, l =0.33 and k =0.28. These values give a value for tan −1l/k = 50◦ and
m = 0.433. The final step uses the definition of F = (4π/T )(hν/g

′)1/2/tgα, to calculate
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hν = 0.195 cm for T = 20 s. Finally, λ=2.83 cm. This value is in the lower range of the
observed values but this may simply be because figures 7 and 8 of Swaters (2003) do
not extend to smaller values of l and k so close to the marginal stability boundary.
This possibility is corroborated by the comment in Baines (1995, page 49), “-the flow
is unstable with disturbances of long wavelength growing most rapidly at marginal
stability”. Note also, that the Froude number of the stream Fr = V/(g′hν)

1/2 = 0.93
and is at the lower end of the range in which Cenedese et al. (2004) found roll waves in
their more controlled experiments. As mentioned above in Swaters (2003), with these
values of F and CD in the expression for V , F2 is a factor of ten less than 2CD , thus
justifying our initial assumption that ignored F in the expression for V . Finally, the
theory was calculated for a Reynolds number, Re = (g′hν)

1/2hν/ν =400. The values
given above result in a value of Re of 100; however, it seems unlikely that the results
of the calculation will be much affected by this slightly smaller value of Re.

It is clear from the very indirect arguments used above to connect experiment and
theory that there is a need for experiments in which the quantities of interest, V , g′

and hν , are measured directly. Experiments of the type presented by Lane-Serff &
Baines (1998) and Cenedese et al. (2004), but with an extended source region, would
seem to have the best chance of doing this with some accuracy.

Finally we note that topographic variations, e.g. submarine canyons, can contribute
significantly to the downslope flow by channelling dense fluid within them (Baines
& Condie 1998). The effect of a canyon has been introduced into the present
investigations, under a wide range of flow parameters. The buoyancy of the bottom
flow channelled in the canyon was found to be considerably larger than that of either
the downslope flow or the Kelvin current. The bottom water characteristics were
observed to be similar to those without the canyon, except that the existence of the
canyon weakened eddies and the Ekman layer propagating towards the canyon.

In the natural flows modelled here bathymetry is likely to play an important role
in the flow behaviour (e.g. there are a large number of wide canyons that extend
from the shelf to depth in the Weddell Sea, for example). Also buoyancy fluxes at the
surface are unlikely to be uniform both spatially and temporally. However, the simple
geometry used in this investigation has allowed some basic features of the flow to be
isolated, and provides a basis for further study.

Support by NSF Ocean Sciences Contract Number OCE-0080069 is gratefully
acknowledged. Thanks are due to Dr Arnold Gordon for bringing this problem to
our attention and encouraging us to apply for funding. The authors also wish to
thank the Associate Editor and the reviewers for their helpful suggestions.

REFERENCES

Armi, L. 1986 The hydraulics of two flowing layers with different densities. J. Fluid Mech. 163,
27–58.

Baines, P. G. 1995 Topographic Effects in Stratified Flows. Cambridge University Press.

Baines, P. & Condie, S. 1998 Observations and modelling of Antarctic downslope flows: a review.
In Ocean, Ice and Atmosphere: Interactions at the Antarctic Continental Margin. Antarctic
Research Series, vol. 75 (ed. S. Jacobs & R. Weiss), pp. 29–49. AGU, Washington, DC.

Bromwich, D., Liu, Z., Van Woert, M. L. & Rogers, A. N. 1998 Winter atmospheric forcing of
the Ross Sea polyna, In Ocean, Ice and Atmosphere: Interactions at the Antarctic Continental
Margin. Antarctic Research Series, vol. 75 (ed. S. Jacobs & R. Weiss), pp. 101–134. AGU,
Washington, DC.

Cenedese, C., Whitehead, J. A., Ascarelli, T. A. & Ohiwa, M. 2004 A dense current flowing
down a sloping bottom in a rotating fluid. J. Phys. Oceanogr. 34, 188–203.



Experiments on continental shelf convection 73

Condie, S. 1995 Descent of dense water masses along continental slopes. J. Mar. Res. 53, 897–928.

Cui, A. & Street, R. L. 2001 Large-eddy simulation of turbulent rotating convective flow
development. J. Fluid Mech. 447, 53–84.

Etling, D. F., Schrader, U., Brennecke, F., Kuhn, G., Chabert d’Hieres, G. & Didelle, H.

2000 Experiments with density current on a sloping bottom on a rotating fluid. Dyn. Atmos.
Oceans 31, 139–164.

Farmer, D. M. & Armi, L. 1986 Maximal two-layer exchange over a sill and through the
combination of a sill and contraction with baratropic flow. J. Fluid Mech. 164, 53–76.

Finnegan, T. D. & Ivey, G. N. 1999 Submaximal exchange between a convectively forced basin
and a large reservoir. J. Fluid Mech. 378, 357–378.

Gascard, J. C. 1991 Open ocean convection and deep water formation revised in the Mediterranean,
Labrador, Greenland and Weddell Seas. In Deep Convection and Deep Water Formation in the
Oceans (ed. P. C. Chu & J. C. Gascard), pp. 157–181. Elsevier.

Gill, A. E. 1973 Circulation and bottom water production in the Weddell Sea. Deep Sea Res. 20,
111–140.

Gordon, A. 1998 Western Weddell Sea thermohaline stratification. Antarctic Research Series,
vol. 75. AGU, Washington, DC.

Gordon, A. L., Huber, B., Hellmer, H. & Flied, A. 1993 Deep and bottom water of the Weddell
Sea’s Western rim. Science 262, 95–97.

Griffiths, R. W. & Hopfinger, E. J. 1983 Gravity currents moving along a lateral boundary in a
rotating fluid. J. Fluid Mech. 134, 357–399.

Grimm, T. H. & Maxworthy, T. 1999 Buoyancy-driven mean flow in a long channel with a
hydraulically constrained exit condition. J. Fluid Mech. 398, 155–180.

Jacobs, P. & Ivey, G. 1998 The influence of rotation on shelf convection. J. Fluid Mech. 369, 23–48.

Jet Propulsion Laboratory Images 1994 http://southport.jpl.nasa.gov/polar/sarimages.html.

Jones, H. & Marshall, J. 1993 Convection with rotation in a neutral ocean: a study of deep ocean
convection. J. Phys. Oceanogr. 23, 1009–1039.

Lane-Serff, G. & Baines, P. 1998 Eddy formation by dense flows on slopes in a rotating fluid.
J. Fluid Mech. 363, 229–252.

Lawrence, G. A. 1990 On the hydraulics of Boussinesq and non-Boussinesq two-layer flows.
J. Fluid Mech. 215, 457–480.

Maxworthy, T. 1996 A frictionally and hydraulically contrained model of the convectively driven
mean flow in partially enclosed seas. Deap Sea Res. 44, 1339–1354.

Maxworthy, T. 1997 Convection into domains with open boundaries. Annu. Rev. Fluid Mech. 29,
327–371.

Maxworthy, T. 2002 Experiments on convection over a combined shelf and sloping bottom: bottom
water formation at a continental margin. USC Rep. January 2002.

Maxworthy, T. & Narimousa, S. 1994 Unsteady turbulent convection into a homogeneous, rotating
fluid, with oceanographic applications. J. Phys. Oceanogr. 24, 865–887.

Mory, M., Stern, M. & Griffiths, R. 1987 Coherent baroclinic eddies on a sloping bottom.
J. Fluid Mech. 183, 45–62.

Muench, R. D. & Gordon, A. L. 1995 Circulation and transport of water along the Western
Weddell Sea margin. J. Geophys. Res. 100, 18503–18515.

Nagata, Y., Kimura, R., Honji, H., Kawaguchi, K. & Hosoyamada, T. 1993 Laboratory experiments
of dense water descending on a continental shelf. In Deep Ocean Circulation, Physical and
Chemical Aspects (ed. T. Teramoto), pp. 333–350. Elsevier.

Narimousa, S. 1997 Dynamics of mesoscale vortices generated by turbulent convection at large
aspect ratios. J. Geophys. Res. 102 (C3), 5615–5624.

Nof, D. 1983 The translation of isolated cold eddies on a sloping bottom. Deep-Sea Res. 30, 171–182.

Phillips, O. M. 1966 On turbulent convection currents and the circulation of the Red Sea. Deep-Sea
Res. 13, 1149–1160.

Swaters, G. E. 2003 Baroclinic characteristics of frictionally destabilized abyssal overflows. J. Fluid
Mech. 489, 349–379.

Whitworth III, T., Orsi, A. H., Kim, S.- J., Nowlin Jr, W. D. & Locarnini, A. N. 1998 Water
mass and mixing near the Antactic slope front. In Ocean, Ice and Atmosphere: Interactions
at the Antarctic Continental Margin. Antarctic Research Series, vol. 75 (ed. S. Jacobs &
R. Weiss), pp. 1–28. AGU, Washington, DC.




